

Innovative Design / Manufacturing Technologies

Enabling Model Parts for a Highly Realistic Surgery Simulator Using Multi-scale, Multi-material Modeling Technology

About this Project

Highly-realistic tangible surgery simulator models that enable quantitative evaluation of surgery techniques

We have developed each separate element of a technology that enables multi-scale composite structure models using multi-materials derived from metals and polymers which have heretofore posed problems in 3D modeling. As an example of its implementation, we created a trial cardiovascular model for catheter surgery as a high-value-added medical equipment. As a surgery simulator that can take temperature measurements, this model enables doctors to qualitatively evaluate surgery techniques.

An innovation society to quicken the pace of innovation

We constructed a hub to speed the pace of innovation (Innovation Society) at the Japan Society of Mechanical Engineers, connecting the seeds (players in a wide swath of industries) to both the real and potential needs of users.

Test Uses / Application Examples

We installed heart and blood vessel modeling modules in the EVE2 surgery simulator from FAIN-Biomedical, a venture company from collaborative site manager Nagoya University, and evaluated it. We are improving every part of it which is applicable to surgery.

Research Achievements

13D printing of metal-polymer composite materials (Nagoya University)

Production of an absolute temperature sensor using laminated modeling technology for non-noble metals and polymers in air

23D Printing of Polymers with Multiple Properties and Multiple Scales (Nagoya University)

Production of parts of the heart with temperature measuring functionality using production technology for differing polymers with differing functionality

3 Die-free Hybrid Sheet Metal Forming Technology (University of Fukui)

Impermeable x-ray marker and production of an EVE2 enclosure using incremental forming

Future Outlook

Making tangible surgery simulator models (EVE2) high-functioning

We aim to sell precision heart models to various medical institutions and medical device manufacturers, and to spread development techniques through their use cases.

Realizing Innovation Society

We will release all of the Innovation Society's systems for through the Japan Society of Mechanical Engineers, and create a virtual meeting place that will contribute to innovation. Also, we will conduct technology matching through PLANET AIDeA, further partnering to encourage innovation.

Research Theme :	Development of Manufacturing Technology for Innovative Apparatus and Innovation Society from Central Japan
Members :	Nagoya University, University of Fukui, The Japan Society of Mechanical Engineers, FAIN-Biomedical Inc.
Contact :	MEMS and Micromachining Laboratory, Nagoya University seiichi.hata@mae.nagoya-u.ac.jp HP: http://mnm.mae.nagoya-u.ac.jp/jp/
Utilization Hub :	PLANET AIDeA (Contact: http://planet-aidea.com/)